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Taking powerful, efficient 
inference to the edge 
 

Executive Summary 
Artificial intelligence (AI) is now the key driving force behind advances in 

information technology, big data and the internet of things (IoT). It is a 
technology that is developing at a rapid pace, particularly when it comes to 
the field of deep learning. Researchers are continually creating new variants 
of deep learning that expand the capabilities of machine learning. But 
building systems that are able to use these deep learning models to analyze 
real-world data presents a major challenge. Silicon cost and energy 
consumption are major hurdles to teams keen to put deep learning into edge 
devices, as well as data centers.  

Conventional digital technology is unable to handle the high compute 
requirements of AI models that need to run in real-time on cost-effective, low-
power hardware. This is a problem that needs to be addressed by a change in 
technology--a change to a hardware platform that employs analog compute-
in-memory (CIM). This is the technology pioneered by Mythic, a new 
generation of AI technology that can propel the next wave of applications that 
harness deep learning and its many variants. 

The challenge of inferencing 
Machine learning has already transformed the world of the data center. 

Rapid progress in deep learning has demonstrated that there are many 
applications that can take advantage of the technology. However, the energy 
demands of these applications present challenges to development teams, 
especially if they want to cost-effectively deploy the technology in systems 
that require low power consumption.  

The key to deep learning’s recent successes was a breakthrough in training 
technology. Researchers found ways to make the training of multi-layered 
neural networks a practical reality, although training is likely to continue to 
rely on high-performance hardware such as graphics processing units (GPUs) 
and similar accelerators for the foreseeable future.  
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In principle, when deep neural networks (DNNs) are deployed into the 
field and used for inferencing – recognizing and classifying data based on a 
model generated by training – the computational requirements are less severe 
than those of the training process. One saving lies in the ability to use lower-
resolution integer arithmetic instead of floating-point arithmetic. During 
training, floating-point arithmetic is needed to support the fine-tuning of the 
network parameters, such as weights. When used in the field for inferencing, 
many DNNs work well with integer arithmetic based on 8-bit data. The 
systems still must run billions of computations through the trained network to 
identify patterns in incoming data, but the compute demand is orders of 
magnitude lower than that needed for training. 

Because they share similar computation hardware requirements, many 
users in data centers have employed the same basic architectures for 
inferencing as they have for training. But the silicon and energy costs of these 
platforms have become burdensome, and these costs limit the expansion of 
deep learning into new markets. Users want to be able to deploy inferencing 
into real-time applications, such as machine vision and audio processing. The 
high frame and sample rates of these systems call for much higher levels of 
computational throughput, compared to systems that are used to identify and 
classify objects in static images.  

For example, the relatively simple AlexNet image-recognition DNN (often 
used as a benchmark for hardware) calls for 725 million multiply-accumulate 
(MAC) operations to handle a single image with a resolution of only 224 x 224 
pixels. At 30 frames per second, this calls for a processing throughput of 22 
billion MACs per second. And this number excludes the other common 
operations required in inferencing such as activations, in which the output of 
each neuron is scaled and compared against a threshold. 

Conventional digital processing pipelines can support the throughput 
required of real-time AI, but the platforms come with high costs in terms of 
silicon real estate and energy. The energy density of the server blades and 
compute accelerators is reaching levels where operators have been pushed to 
employ increasingly complex and costly heat-containment and management 
strategies. Some have begun to investigate the use of liquid cooling, even to 
the point of immersing the systems in fluids with high thermal conductivity.  

In edge systems, the problems of energy consumption and silicon cost are 
even more dramatic. For many potential applications, there is no hardware 
available that supports the AI requirements at the required silicon cost or 
energy budget. This is why initial deployments of AI for the edge have largely 
focused on the use of high-bandwidth internet connections to offload much of 
the deep-learning work to remote cloud servers. In the short term, this 
strategy proved moderately successful for some target markets, such as in-
home smart speakers. These are devices that vendors can expect to be 
provided with access to a permanent internet connection. Even then, concerns 
have grown over the privacy of conversations and other user data transferred 



 

3 

to the cloud for processing. User acceptance is likely to be much higher for 
systems that can perform the recognition of speech or images local to the user 
and are not forced to upload data to the cloud.  

For many mobile and real-time industrial systems, pushing inferencing to 
the cloud is impractical. The systems may not have access to sufficiently high-
bandwidth communications links, and even where they are available, the 
latency incurred by passing data over long distances is a major challenge to 
responsiveness. Real-time systems cannot afford to have image-recognition 
functions miss deadlines. They need to have these services provided locally.  

Key to the high-volume deployment of inferencing systems at the edge is 
the ability to reduce the energy demand, as well as the amount of silicon area 
needed. The metric that matters most is "inferences per watt per dollar" 
(I/W/$):  how many image frames can be processed in a given amount of 
time and at what energy and capital cost.  

Digital solutions hit the wall 
At first glance, architectures such as those of GPUs appear to be well suited 

to handling deep-learning workloads. The bulk of the arithmetic operations 
performed in DNN layers are based on MAC operations. As GPUs were 
developed to perform matrix transformations to map 3D models onto 2D 
surfaces, their pipelines are optimized for MACs. The weakness of the GPU 
and similar digital architectures lies in the amount of energy needed to 
perform operations like these for DNNs. 

There are two root causes of excess energy consumption that result from 
the use of today’s digital architectures. One lies in the arithmetic process of 
multiplication. For high throughput, multipliers implemented in digital 
systems need to employ a large number of logic gates in parallel: their 
number grows exponentially with data resolution. The use of approximation 
helps with this for inferencing workloads. A common technique is to reduce 
the floating-point values for weights used during training to 8-bit values for 
use during inference. This reduction comes with comparatively little cost to 
accuracy. In an attempt to cut further the digital processing burden, users 
have tried coarser levels of approximation for neuron connections that are 
deemed less important. These optimizations can result in the processing being 
reduced to using binary or ternary calculations, which also lowers the 
computational overhead but can lead to a loss of model accuracy in real-world 
applications. 

A bigger problem with existing approaches to DNN processing based on 
digital logic is that they cannot make full use of the spatial and temporal 
locality of information that is inherently available in these calculations. 
Today’s digital architectures, such as GPUs, try to make use of locality by 
caching input data close to the processor. These data elements may be reused 
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many times over when calculating the effect of each neuronal weight on the 
inputs. A layer may have a thousand input data elements and output a 
thousand more. But they pass through a process that can involve accessing a 
million or more individual weights. Each input data element may be reused a 
thousand times during the process, but an individual weight used just once. 
As a result, caching the weight data does not make sense in the context of a 
conventional digital processor, so there is little to stop the million weight data 
accesses to remote memory from incurring a huge energy burden. 

One technique to reduce the number of weight accesses is to prune the 
neural network. This is a process invoked after training in which paths 
between neurons that are deemed to have a limited effect on model behavior 
are removed. The need to employ both approximation and pruning to make 
DNN workloads run at acceptable performance greatly increases the 
complexity of development of the neural networks. The quality of results also 
falls. Errors tend to increase as pruning and approximation are used more 
aggressively. Development complexity increases because of the need for 
model tuning to recover from the pruning and the use of binary or ternary 
approximation to fit within the power and silicon-cost target of the end 
application without compromising model behavior. The development team is 
faced with having to re-analyze models extensively, because the pruned 
versions do not match those trained on a workstation or in the cloud at full 
floating-point resolution.   

An analog compute-in-memory solution 
What is required for inferencing at the edge and for low-energy data-center 

inferencing is an architecture that allows for the seamless transfer of cloud-
trained models, but which does not suffer from the high energy cost of 
memory transfers and high-resolution computation that is common to today’s 
digital implementations. Mythic’s compute-in-memory solution uses the 
memory itself to perform computations and so avoids the need to continually 
move weight data around the system. This slashes the energy per MAC from 
10pJ in a typical digital edge inferencing implementation that holds the large 
weight arrays in DRAM to as low as 0.5pJ. Across the billions of MAC 
computations required for video-rate inferencing at moderate resolution, the 
resulting energy savings are dramatic.  

In Mythic's architecture, each access to weight memory is essentially 
energy-free. The main contribution to the processing energy comes from the 
MAC operation itself, which is implemented simply by passing data through 
the memory. As a result, this process is much more efficient than that found in 
logic-hungry digital datapaths. The core of the Mythic implementation is a 
flash memory technology that is widely used in microcontrollers and other 
mass-production embedded systems.  
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The readout circuitry in a conventional flash memory discretizes these 
programmed charge values into a 1, 2 or 3-bit value. In practice it is possible, 
in a flash memory made on a mature process such as 40nm, to store reliably a 
range of charges that correspond to a digital resolution of 8 bits. A further 
advantage of the flash memory cell is that it is non-volatile. Once 
programmed it can store an electrical charge for long periods of time without 
power, a key advantage for systems that need to run off of a battery. But the 
memory can be erased and reprogrammed at any time to support new or 
updated models.  

When a charge is programmed into a flash memory device, its electric field 
has an effect on any signal passing through it. In the Mythic architecture, the 
flash transistor acts as a variable resistor that reduces the signal level passing 
to the output. That reduction is proportional to the analog value stored in the 
memory. This simple effect implements the multiplication stage found in 
DNN calculations. The accumulation process, in which the output from each 
of those calculations is summed, is handled by aggregating the output of an 
entire column of memory cells. Thanks to these two properties, the Mythic 
architecture can process an entire input vector in a single step rather than 
iterating at high speed as in a digital processor.  

Thanks to its ability to streamline MAC processing by orders of magnitude 
compared to conventional digital processors, Mythic’s memory-based 
accelerator makes it possible to transfer fully trained neural networks directly 
to a low-energy inferencing platform without any need for pruning or further 
approximation. But the analog memory-based core is only part of the solution. 
Functions such as activations and pooling, which form key parts of any DNN 
are generally best implemented in digital logic. The Mythic architecture 
accommodates this by including a single-instruction, multiple-data (SIMD) 
accelerator unit coupled to a RISC-V processor that coordinates operations 
and local SRAM to hold temporary data. With these components, the Mythic 
solution has the ability to run a complete DNN model independently.  

A key element of the Mythic solution is scalability. The combination of 
memory-based accelerator, SIMD engine, SRAM and RISC-V processor forms 
a tile in an array of DNN engines. All the tiles are linked by a high-speed 
network-on-chip (NoC) routing mesh to allow for the efficient flow of input, 
output and intermediate data elements. The array of tiles is managed by an 
on-chip processor and communicates with the system’s host processor over a 
PCIe interface.  

The mesh architecture of the Mythic platform provides the ideal substrate 
for applications such as machine learning. In contrast to the many 
applications written for conventional architectures, which revolve around the 
sequential processing of a single stream of code, AI inferencing is a graph-
based application. Graph applications are well suited to dataflow 
architectures where it is straightforward to assign a different compute element 
to each node of the graph. When one graph node has completed its work, the 
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data output flows to the next graph node for processing. With its combination 
of different types of compute functions in a mesh, Mythic implements a 
highly efficient dataflow architecture. 

The dataflow architecture also maximizes inference performance by having 
many of the compute-in-memory elements operating in parallel, pipelining 
the image processing by handling neural-network layers in parallel in 
different tiles of the array. By being built from the ground-up as a dataflow 
architecture, the Mythic solution minimizes the memory and computational 
overhead required to manage the dependency graphs that define dataflow 
computing, and it keeps the application operating at maximum performance. 
The result is an architecture that delivers inferencing performance at 
breakthrough silicon cost and power levels, while also supporting a wide 
range of edge and data-center systems. 

A new wave of applications 
An architecture that offers much greater energy efficiency for applications 

that rely on deep learning provides developers with the ability to build a 
much wider range of smart devices, devices that can operate independently of 
the cloud when required. Applications range from security cameras to robots 
and drones that need to operate for long periods away from a fixed power 
source. 

Using a highly efficient architecture such as that developed by Mythic, 
manufacturers will be able to take the next step up from the compute 
technology found in systems today. Industrial control provides a large 
number of potential applications for smarter systems. Many processes, from 
smelting to oil extraction, suffer from long time constants in the systems they 
attempt to model. These challenge conventional closed-loop control 
algorithms. Complex patterns in the incoming sensor data can provide early 
warning of looming problems. Deep learning provides a mechanism to track 
these patterns. But the cost and power of traditional compute platforms 
makes deep learning difficult to implement, especially in environments where 
it is difficult to provide high-bandwidth communications to data centers. The 
Mythic platform provides the ability build compact, low-power, self-
contained control systems that leverage the power of deep learning.  

In robotic systems, such as airborne drones, the Mythic platform enables 
the use of deep learning for image and sensor processing. The result is a 
dramatic improvement to the situational awareness of these systems. Armed 
with the ability to classify objects in its camera input, a drone can gain greater 
autonomy and reduce the need for operators to stay in constant control of the 
device. This makes it more feasible to use drones for tasks like inspecting 
infrastructure such as power grids and pipelines over long distances, and for 
other over-the-horizon sensing applications. 
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The Mythic platform inside security cameras makes it possible for them to 
detect anomalies and problems in their field of view without having to pass 
every single frame of video to a remote server for inspection. This one change 
can dramatically reduce network bandwidth and power requirements. It also 
allows the deployment of wireless security cameras powered only by a 
battery, so that they can be placed in locations that are out of reach of network 
and power-supply lines.  

When the deep-learning functions enabled by Mythic are not required, the 
devices can be powered down to save energy and maintain a high level of 
battery autonomy. The non-volatile nature of the flash memory ensures the 
millions of weights required for the neural-network layers are preserved and 
immediately available when required.  

The scalability of the Mythic platform makes it easy to tune the 
implementation to the requirements of the model. Individual tiles or groups 
of tiles inside the device can be dedicated to different models. For example, in 
a system intended for use in drones or robots, one group of tiles can be 
assigned to camera image enhancement to reduce the effect of lighting 
changes on object recognition. Other tiles can be dedicated to scene 
segmentation and object tracking, each feeding their results back to the host 
processor.  

In the data-center environment, support for interchip communication 
between Mythic devices allows the creation of large-scale inferencing engines 
that are able to handle the complex workloads now encountered in this 
environment. Compared to existing platforms, Mythic offers significant 
advantages in terms of cost and energy efficiency. Because the core MAC 
operations consume a fraction of the power of that required by GPU, FPGA or 
digital ASIC platforms, the Mythic solution can support extremely high 
processing densities without the need for advanced cooling or power-supply 
infrastructure. The result is a platform that scales from the simplest edge 
sensor node to highly sophisticated cloud based DNN inferencing.  

Delivering practical inferencing 
Mythic's platform enables the rapid development of deep-learning 

applications, as it supports models trained using readily available 
frameworks, such as ONNX and TensorFlow, without requiring that the 
developer perform complex runtime optimizations. Mythic has adopted a 
software strategy that will ensure the process of transferring models to the 
end device is as seamless as possible through the use of tools that convert the 
trained models produced by a variety of machine-learning frameworks into 
executables that can be downloaded to a single Mythic product or an array of 
them. Integration into end applications will be supported by libraries that 
provide application programming interfaces (APIs) to the software running 
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inside the device, making it easy to employ the Mythic silicon as a coprocessor 
to conventional microcontroller-based designs. 

The software developed for the Mythic platform optimizes the neural 
network for execution through a simple two-stage process. The first step, 
using the Mythic Optimization Suite, transforms the trained network into a 
form that is compatible with analog CIM, including quantization from 
floating-point representations to 8-bit integer. This suite checks that the 
quantization will not degrade performance below acceptable levels. The tools 
also include retraining flows for applications that have strict accuracy 
requirements or more aggressive performance and power targets or a 
combination of all three. Quantization-aware and analog-aware retraining 
builds resiliency into layers that are more sensitive to the lower bit-depths of 
quantization and to analog noise.  

The Mythic Graph Compiler follows and performs automated mapping 
onto the target array, packing, and support-code generation. The output is a 
packaged binary that contains everything that the host driver needs to 
program and control the Mythic device to perform inferencing in a real-time 
environment. Longer term, Mythic envisions an SDK with a suite of powerful 
tools to help developers evaluate tradeoffs and identify the best solution 
within the constraints of power and cost.  

As well as integrating easily with today’s popular tools, it is important to 
be able to take advantage of the rapid pace of development in the field of 
machine learning. As new layer types and network topologies are invented, 
software and hardware support should be straightforward. The Mythic 
platform ensures this through the modular design of the software SDK, 
leveraging a large amount of generic matrix compute capabilities rather than 
architecture-specific accelerators.  

Flexibility is just as important to the hardware architecture. The scalable, 
tiled nature of the Mythic platform greatly eases development and integration 
into an end system. During prototyping, it is likely that there will be multiple 
iterations of model tuning and training to ensure that the core deep-learning 
engine can deal with real-world problems and is unaffected by problems that 
may be caused by a skewed training set. For example, if the prototyping stage 
determines that additional models are needed to handle changes in lighting or 
environmental conditions, a move to a larger array can easily be made. 
Similarly, the developers may find opportunities for cost reduction that allow 
the use of a smaller model and a more appropriate device. 

Mythic intends to provide a range of implementations that scale in size and 
number. The platform will be made available not just in IC form but as 
accelerator cards that may use multiple devices. The tiled architecture eases 
the production of derivatives based on market demand and so supports the 
evolution of deep learning in edge and low-power data-center systems as new 
applications emerge.  

By tackling the core aspects of deep learning with an architecture 
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optimized for low-power operation, Mythic is poised to drive a new wave of 
smart applications that unleash the power of AI.  


